Filter Results By:
Products
Applications
Manufacturers
Software Defined Radio
function of wireless communication transmitter and receiver is changed by software.
See Also: Radio, Radio Frequency, Ham Radio, Mobile Radio, SDR
- Pickering Interfaces Inc.
product
Software Drivers and Application Software Packages
In test system development, the best hardware is only usable if its software control environment is robust and easy-to-use. If you are a test system developer, you need to look at both the hardware and software aspects of your vendors of choice.
-
product
Software Defined Radio Firmware
FWSDR
The combination of the firmware FWSDR and the high-end digitizer ADQ14 creates a unique platform for software-defined radio. This 14-bit digitizer provides the high dynamic range needed in an RF environment and the interleaving technology provides high signal bandwidth coverage.The interleaving technology is provided through the use of SP Devices’ proprietary technology ADX which removes typical interleaving artifacts and enables the unique combination of bandwidth and dynamic range.
-
product
400 MHz to 4.4 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device
783927-01
400 MHz to 4.4 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device - The USRP-2952 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and shorten time to results. You can prototype a range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The USRP-2952 is equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) reference clock. GPS disciplining delivers improved frequency accuracy and synchronization capabilities.
-
product
USRP Software Defined Radio Stand-Alone Device
The USRP Software Defined Radio Stand-Alone Device consists of an onboard processor, FPGA, and RF front end. You can program this device using either LabVIEW Communications System Design Suite or an open-source software workflow, depending on the operating system you choose. You can provision the device with NI Linux Real-Time, Linux Fedora, or Linux Ubuntu real-time operating systems. The USRP Software Defined Radio Stand-Alone Device enables you to prototype a range of advanced research applications such as stand-alone LTE or 802.11 device emulation; Medium Access Control (MAC) algorithm development; multiple input, multiple output (MIMO); heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.
-
product
Switch Device for PCI Express
The Switch Device for PCI Express provides two PCI Express upstream ports and eight downstream ports. You can connect the downstream ports to external devices, such as a Software Defined Radio Reconfigurable Device, to create large multichannel, multiple input, multiple output (MIMO) systems. You can also connect multiple Switch Devices for PCIe to a single PXI Express chassis to create large MIMO systems with a Software Defined Radio Reconfigurable Device.
-
product
PXIe-5645, 6 GHz, 80 MHz Bandwidth, RF and Baseband PXI Vector Signal Transceiver
782377-01
6 GHz, 80 MHz Bandwidth, RF and Baseband PXI Vector Signal Transceiver—The PXIe‑5645 combines a vector signal generator and vector signal analyzer with FPGA-based real-time signal processing and control into a single device, also known as a VST. Because of this software-designed approach, the PXIe‑5645 offers the flexibility of a software defined radio architecture with RF instrument class performance. The PXIe‑5645 features a high-performance, differential or single-ended baseband I/Q interface. This interface allows the PXIe‑5645 to address many additional applications, such as testing both the upconverted RF and downconverted baseband signals of a device with a single instrument.
-
product
USRP-2945, 10 MHz to 6 GHz, 80 MHz Bandwidth, Reconfigurable USRP Software Defined Radio Device
785263-01
10 MHz to 6 GHz, 80 MHz Bandwidth, Reconfigurable USRP Software Defined Radio Device - The USRP-2945 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless receiver systems. This software defined radio reconfigurable device is designed for over-the-air signal acquisition and analysis. It features a two-stage superheterodyne architecture with four independent receiver channels and shares local oscillators for phase-coherent operation. It also offers a Kintex-7 FPGA programmable with the LabVIEW FPGA Module. With these features, the USRP-2945 has the RF and processing performance for applications including spectrum monitoring, direction finding, signals intelligence, wideband recording, and radar prototyping.
-
product
4.4 GHz Spectrum Analyzer
USB-SA44B
The Signal Hound USB-SA44B is a Software Defined Receiver (SDR) optimized as a narrow-band real-time spectrum analyzer. It is compact, simple to use, and an effective troubleshooting tool for general lab use, engineering students, ham radio enthusiasts, and electronics hobbyists.
-
product
USRP-2974, 10 MHz to 6 GHz, x86 Processor, GPS-Disciplined OCXO, USRP Software Defined Radio Stand-Alone Device
785606-01
The USRP-2974 is built on the LabVIEW reconfigurable I/O (RIO) architecture with an onboard Intel Core i7 processor running the NI Linux Real-Time OS. The USRP-2974 is a USRP Software Defined Radio Stand-Alone Device, meaning that you can target the onboard processor with LabVIEW Communications System Design Suite to deterministically perform processing. The USRP-2974 is also equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) Reference Clock. You can prototype a range of advanced research applications that include stand-alone LTE or 802.11 device emulation; Medium Access Control (MAC) algorithm development; multiple input, multiple output (MIMO); heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.
-
product
3U VPX Virtex-7 FPGA ADC/DAC
VPX3-530
Curtiss-Wright Defense Solutions
The VPX3-530 combines multiple channel high-speed ADCs and DACs with a latest generation user programmable Xilinx Virtex-7 FPGA in a range of rugged build formats for demanding applications such as SIGINT, radar and Software Defined Radio (SDR).
-
product
USRP-2954, 10 MHz to 6 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device
783153-01
The USRP-2954 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and shorten time to results. You can prototype a range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The USRP-2954 is equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) reference clock. The GPS disciplining delivers improved frequency accuracy and synchronization capabilities.
-
product
Software Defined Radio Program
Scientific Research Corp. STI Division
SRC is on the forefront of software defined radio technology, test, and interoperability. We provide systems engineering support for waveform testing, software and hardware integration, standards compliance, and information assurance.
-
product
Receivers
SDR receivers (Software Defined Radio) perform all signal processing in software, offering multi-standard support, access to all data in the channel, and advanced RF measurements.DekTec's other receivers are based on standard demodulator chips and therefore do not take cycles from the host CPU. These can be used if the SDR features are not required.
-
product
USRP-2944, 10 MHz to 6 GHz, Reconfigurable USRP Software Defined Radio Device
783149-01
The USRP-2944 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
Mezzanine FPGA I/O Module
ADC-MOD2
Curtiss-Wright Defense Solutions
Simple analog input to a processor is no longer enough. Software Defined Radio (SDR), RADAR, and telecommunications applications demand closely coupled high performance processing.
-
product
USRP-2900, Software Defined Radio Device Bundle
784113-01
USRP-2900 Software Defined Radio Device Bundle - The USRP-2900 Teaching Bundle includes two USRP (Universal Software Radio Peripheral) Software Defined Radio Devices, turnkey courseware, and other accessories such as USB 3.0 cables and SMA attenuators. Students can use USRP … Software Defined Radio Devices with LabVIEW to experiment with real-world signals in introductory communications and digital communications laboratories. The USRP-2900 Teaching Bundle helps students experiment with FM radio, GPS, GSM, Bluetooth, and ISM signals. The bundle also includes components of a lab station that students can use to gain hands-on experience with live communication links between multiple USRP Software Defined Radio Devices.
-
product
PXI-5670, 2.7 GHz PXI Vector Signal Generator
PXI-5670 / 778768-01
2.7 GHz PXI Vector Signal Generator—The PXI‑5670 has the power and flexibility you need for product development applications from design through manufacturing. It can generate custom and standard modulation formats such as AM, FM, PM, ASK, FSK, PSK, MSK, and QAM. The PXI‑5670 delivers a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as for emerging areas including software defined radio, radio frequency identification (RFID), and wireless sensor networks.
-
product
USRP-2940, 50 MHz to 2.2 GHz, Reconfigurable USRP Software Defined Radio Device
783146-01
50 MHz to 2.2 GHz, Reconfigurable USRP Software Defined Radio Device - The USRP-2940 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
NITOS Wireless Sensor Platform
The NITOS prototype wireless sensor mote, is comprised of open-source and configurable modules. NITOS mote features the ATmega32u4 microcontroller running at 8MHz and operating at 3.3V. The aforementioned microcontroller is fully compatible with the Arduino platform that enables ease of software development and provides compatibility with several commercial sensing modules. Moreover, the platform is equipped with an Xbee radio interface that enables communication with the respective gateway. The Xbee module is a tiny device ideal for setting up mesh networks and has a defined rate of 250 kbps. This module uses the IEEE 802.15.4 stack which is the basis for theZigbee protocol. Apart from the Xbee module, NITOS mote can also feature a WiFi wireless interface in order to communicate with WiFi gateways. The developed mote currently features specific sensing modules, an air temperature and humidity sensor, a light intensity sensor and a human presencesensor. Various types of sensing modules and actuators can be further integrated exploiting existing Arduino software that implements several existing communications protocols. The firmware can be easily uploaded through the on-board USB connection. Figure 1 illustrates the developed NITOS mote and the respective gateway node.
-
product
USRP Software Defined Radio Device
The USRP Software Defined Radio Device is a reconfigurable RF device that includes a combination of host-based processors, FPGAs, and RF front ends. The USRP Software Defined Radio Device include options that range from lower cost options with fixed FPGA personalities to high-end radios with a large, open FPGAs and wide instantaneous bandwidth. These devices can be used for applications such as multiple input, multiple output (MIMO) and LTE/WiFi testbeds, SIGINT, and radar systems.
-
product
Mezzanine FPGA I/O Module
DAC-MOD1
Curtiss-Wright Defense Solutions
Simple analog IO to a processor is no longer enough. Software Defined Radio (SDR), RADAR, and telecommunications applications demand closely coupled high performance processing.
-
product
USRP‑2930, 20 MHz Bandwidth, 50 MHz to 2.2 GHz, Included GPS-Disciplined OCXO, USRP Software Defined Radio Device
781910-01
20 MHz Bandwidth, 50 MHz to 2.2 GHz, Included GPS-Disciplined OCXO, USRP Software Defined Radio Device - The USRP‑2930 is a tunable RF transceiver with a high-speed analog‑to‑digital converter and digital‑to‑analog converter for streaming baseband I and Q signals to a host PC over 1 Gigabit Ethernet. It also features a GPS-disciplined oscillator (GPSDO) with PPS accuracy of ±50 ns. You also can use the NI USRP‑2930 for the following communications applications: white space; broadcast FM; public safety; land-mobile, low-power unlicensed devices on industrial, scientific, and medical (ISM) bands; sensor networks; cell phone; amateur radio; or GPS.
-
product
GNSS Simulator
NCS NOVA
The NCS NOVA is IFEN´s newest RF signal generator technology based on a modular and highly flexible Software Defined Radio (SDR) platform. This flexibility makes the NCS NOVA the ideal choice for a wide range of test applications.The NCS NOVA`s full upgradeability makes it a future-proof investment for the upcoming multi-frequency era in commercial and professional applications. It is far more than just a GPS/GNSS Simulator!
-
product
PXIe-5672, 2.7 GHz, 20 MHz Bandwidth Digital Upconverter Included, PXI Vector Signal Generator
779900-02
2.7 GHz, 20 MHz Bandwidth Digital Upconverter Included, PXI Vector Signal Generator —The PXIe‑5672 features quadrature digital upconversion, which reduces waveform download and signal generation time. It is a general-purpose vector signal generator that can generate standard modulation formats such as AM, FM, PM, ASK, FSK, MSK, GMSK, PSK, QPSK, PAM, and QAM. The PXIe‑5672 delivers a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as emerging areas including software defined radio, radio frequency identification (RFID), and wireless sensor networks. For specific communications standards, you can use various software add-ons to generate modulated signals according to standards such as WCDMA, DVB‑H, and ZigBee.
-
product
PXIe-5644, 6 GHz, 80 MHz Bandwidth, RF PXI Vector Signal Transceiver
782376-01
6 GHz, 80 MHz Bandwidth, RF PXI Vector Signal Transceiver—The PXIe‑5644 combines a vector signal generator and vector signal analyzer with FPGA-based real-time signal processing and control into a single device, also known as a VST. Because of this software-designed approach, the PXIe‑5644 features the flexibility of a software defined radio architecture with RF instrument class performance.
-
product
Transceiver Adapter Module For FlexRIO
Transceiver Adapter Modules for FlexRIO feature multiple inputs, outputs, and digital I/O lines for applications that require the acquisition and generation of IF or baseband signals with in‐line, real‐time processing. Example applications include RF modulation and demodulation, channel emulation, signals intelligence, real‐time spectrum analysis, and software defined radio (SDR). Transceiver Adapter Modules also provide digital I/O capability for interfacing with external hardware.
-
product
PXIe-5672, 2.7 GHz, 20 MHz Bandwidth Digital Upconverter Included, PXI Vector Signal Generator
779900-01
2.7 GHz, 20 MHz Bandwidth Digital Upconverter Included, PXI Vector Signal Generator —The PXIe‑5672 features quadrature digital upconversion, which reduces waveform download and signal generation time. It is a general-purpose vector signal generator that can generate standard modulation formats such as AM, FM, PM, ASK, FSK, MSK, GMSK, PSK, QPSK, PAM, and QAM. The PXIe‑5672 delivers a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as emerging areas including software defined radio, radio frequency identification (RFID), and wireless sensor networks. For specific communications standards, you can use various software add-ons to generate modulated signals according to standards such as WCDMA, DVB‑H, and ZigBee.
-
product
USRP‑2932, 20 MHz Bandwidth, 400 MHz to 4.4 GHz, Included GPS-Disciplined OCXO, USRP Software Defined Radio Device
781911-01
20 MHz Bandwidth, 400 MHz to 4.4 GHz, Included GPS-Disciplined OCXO, USRP Software Defined Radio Device - The USRP‑2932 is a tunable RF transceiver with a high-speed analog‑to‑digital converter and digital‑to‑analog converter for streaming baseband I and Q signals to a host PC over 1 Gigabit Ethernet. You can also use the NI USRP‑2930 for the following communications applications: WiFi, WiMax, S‑band transceivers, and 2.4 GHz industrial, scientific, and medical (ISM) band transceivers.
-
product
Wireless Test Solutions
Adivic/Chroma Group has been in the development of RF & Wireless test solutions for more than a decade. Take RF Recorder as an example, it has been adapted by all major Japanese & Korean automotive brand names such as Mitsubishi, Honda, Hyundai,.. ,most of the global IC design houses with DTV chips, and also military entities in NATO. With the same customer-proved Software Defined Radio architecture, we have introduced Wi-Fi, Bluetooth tester since 2014. It will soon cover other current/future wireless standards such as 4G/LTE, 802.11ax, 802.11ah, etc.
-
product
Software Defined Radio
NI software defined radios (SDRs) provide the design solution to rapidly prototype wireless communications systems, which leads to faster results. You can present applications with real-world signals such as multiple input, multiple output (MIMO) and LTE/WiFi testbed.
-
product
NI-5783, 40 MHz Bandwidth Transceiver Adapter Module for FlexRIO
784364-02
The NI‑5783 has DC‑coupled inputs with two variants: an elliptic filter variant optimized for frequency-domain applications and a Butterworth filter variant optimized for time-domain applications. The NI‑5783 is particularly well suited for applications in software defined radio, electronic warfare, high-performance machine control, and medical imaging. The NI‑5783 is compatible only with the PXI FPGA Module for FlexRIO modules that have a Kintex‑7 FPGA and the stand-alone Controller for FlexRIO.